Robert May Prize

The Methods in Ecology and Evolution (MEE) Robert May early career researcher award is named after Lord May, from the University of Oxford. The prize is awarded annually to the best paper submitted by an early career author at the start of their research career. In the absence of extenuating circumstances, ‘early career’ is defined as less than 5 years post-Ph.D. or -D.Phil. experience according to the date of your graduation certificate.

If the first author of a paper considers that they are eligible for this award, they are invited to nominate themselves during the submission process through ScholarOne Manuscripts. Those nominated are in the early stages of their research career; slightly older authors who have had their careers in ecology interrupted or have developed later, can also be considered.

The winner is selected by the Editors of MEE at the end of each year, and an announcement made early in the following year. Along with this prestigious prize, the winner receives £250 and membership of the BES, which are presented at the BES Annual Meeting in the UK, if the winner can attend.

Read the Virtual Issue bringing together the winning and highly commended papers from all the BES journals  in 2015.

For further information and informal enquiries, contact Chris Grieves, Methods in Ecology and Evolution Assistant Editor.

Winner of the Robert May Prize 2015


Kim Calders

Nondestructive estimates of above-ground biomass using terrestrial laser scanning
Kim Calders, Glenn Newnham, Andrew Burt, Simon Murphy, Pasi Raumonen, Martin Herold, Darius Culvenor, Valerio Avitabile, Mathias Disney, John Armston and Mikko Kaasalainen (Methods in Ecology and Evolution, 6:2, pp 198–208

The winner of this year’s Robert May Early Career Researcher Award is Kim Calders. Kim led the work on the paper, “Nondestructive estimates of above-ground biomass using terrestrial laser scanning” with an international team of coauthors. They have developed a way to harness laser technology for use in measurements of vegetation structure of forests. The study is an important development in the monitoring of carbon stocks for worldwide climate policy-making.

Both carbon stocks and above-ground biomass are important details for the United Nations initiative on Reducing Emissions from Deforestation and Forest Degradation (UN-REDD) – a programme striving to reduce the destruction of forests and preserve the uptake of carbon by trees. Previously, weighing trees in forests was time-consuming, expensive and destructive – particularly in tropical forests where trees can be over 50m tall and weigh over 100 tonnes. As a result, all current estimates of tropical forest carbon stocks are based on a small number of weighed trees. Terrestrial laser scanning is an active remote sensing technique that can measure precise distances by sending out laser energy and then analysing the reflected energy. Also known as terrestrial LiDAR, the method allows us to measure biomass with far more certainty than before. While traditional methods yielded results that may have been off by as much as 37%, the LiDAR method developed by Calders et al. delivers over 90% accuracy. Essentially, we can now ‘weigh’ trees far more precisely and then determine their biomass.

This paper – which brings together ecologists, remote sensing scientists and mathematicians – is a great example of how international and interdisciplinary collaboration can be a catalyst for significant scientific progress in ecology and forestry. In one recent demonstration of the method, researchers collected laser scan measurements of over 1000 trees in just 10 days. The method will now be tested in forests that are potentially more important for worldwide carbon stocks than Australian forests, including tropical forests in Gabon, Peru, Indonesia and Guyana.

Kim undertook a BSc and MSc in Bioscience Engineering at the Katholieke Universiteit Leuven in Belgium. He then commenced a MSc in Remote Sensing at University College London, followed by a PhD in LiDAR Remote Sensing at Wageningen University in the Netherlands. Over the course of his PhD, he has built up expertise in 3D measurements in both a research and operational context for the monitoring of vegetation dynamics. Kim is currently employed as a postdoctoral researcher with the National Physical Laboratory and UCL, where he explores the use of 3D data for end-to-end traceability of in-situ measurements and satellite-derived essential climate variables.

Winner of the Robert May Prize 2014

Laure Gallien

The 2014 Robert May Prize winner is Laure Gallien for her paper Identifying the signal of environmental filtering and competition in invasion patterns – a contest of approaches from community ecology, co-authored with Marta Carboni and Tamara Münkemüller  (Methods in Ecology and Evolution, 5: 1002–1011).

Today, biological invasions are of major concern for maintaining biodiversity. However, understanding what drives the success of invasive species at the scale of the community remains a challenge. Two processes have been described as main drivers of the coexistence between invasive and native species: environmental filtering and competitive interactions. However, recent reviews have shown that competitive interactions are rarely detected, and thus their importance as drivers of invasion success placed under question. But can this be due to pure methodological issues? Using a simulation model of community assembly, Laure and co-authors show that the infrequent detection of competition can arise from three important methodological shortcomings, and provide guidelines for future studies of invasion drivers at the scale of the community.

During her MSc in Biodiversity, Ecology and Evolution, Laure became passionate about the study of biological invasions, and decided to carry out a PhD on the ecological and evolutionary drivers of invasion with Wilfried Thuiller and Sébastien Lavergne at the Alpine Ecology Lab in Grenoble (France). She currently lives in Switzerland and works as a post-doc with Niklaus E. Zimmermann at the WSL institute, where she explores the influence of evolutionary history on extant species invasiveness.

Winner of the Robert May Prize 2013

Will Pearse

The 2013 winner is Will Pearse, for his co-authored paper phyloGenerator: an automated phylogeny generation tool for ecologists published in volume 4, issue 7 of Methods in Ecology and Evolution.

Although ecologists frequently want to make use of phylogenies, they often lack the skills to create detailed phylogenies of their study taxa. phyloGenerator greatly simplifies the process of creating a phylogeny, automating the download of DNA data and the use of modern phylogenetic software to produce a dated, defensible phylogeny. By linking together a number of existing tools into a single command-line interface and providing an extendable Python library, phyloGenerator is also a useful tool for phylogeneticists wishing to use an open, reproducible phylogenetic workflow. The Editors commented that, “this is an exciting idea that makes phylogenies almost immediately accessible to any researcher needing to use them. It is also a terrific example of the power of what we can achieve when data are made open and accessible.”

Will studied Zoology as an undergraduate at the University of Cambridge, then completed an MSc in Ecology, Evolution and Conservation, and later a PhD at Imperial College London supervised by Andy Purvis and David Roy (Centre for Ecology and Hydrology, Wallingford). His PhD focused on how the phylogeny of species in a community can be used to understand the ecological assembly of that community, and how phylogeny informs our understanding of communities undergoing change. Will is now a post-doc in Jeannine Cavender-Bares’ lab at the University of Minnesota, where he studies urban plant communities.

Winner of the Robert May Prize 2012

Sarah Papworth

The 2012 winner is Sarah Papworth, for her co-authored paper “ Movement ecology of human resource users: Using net squared displacement, biased random bridges and resource utilization functions to quantify hunter and gatherer behaviour” published in volume 3, issue 3 of Methods in Ecology and Evolution. Although GPS trackers can rapidly collect data on animal movement, methods for analysing this large amount of data are still being developed. Sarah’s paper describes a methodological framework for the analysis of GPS track records of foragers which routinely return to a central place after foraging, such as a den or nest. Her approach combines three existing methods within a flexible framework that permits accurate description of resource use and movement in humans and animals. This approach will be particularly useful for our understanding of human resource extraction and conservation planning.

Sarah studied a BA Honours in Anthropology at the University of Durham, which focused on human and primate behaviour. This lead to an interest in field biology in the tropics, and she went on to study blue monkeys in Uganda. Sarah then completed an MSc in Ecology, Evolution and Conservation, and a PhD in Conservation Science, at Imperial College London, supervised by E.J. Milner-Gulland and Katie Slocombe (University of York). Her PhD focused on human and primate behaviour within the context of hunting by the Waorani of Amazonian Ecuador, and involved extensive fieldwork. Data collected for her PhD were used to illustrate the methodological framework developed by Sarah and her co-authors in the Robert May prize-winning paper. Sarah has just moved to Singapore, where she is currently a research fellow focusing on poverty and biodiversity at the National University of Singapore.

 Winner of the Robert May Prize 2011

Tyler Kuhn

The 2011 winner is Tyler Kuhn, for his co-authored paper “A simple polytomy resolver for dated phylogenies” published in volume 2, issue 5 of Methods in Ecology and Evolution. Unresolved nodes in phylogenetic trees (polytomies) have long been recognised for their influences on specific phylogenetic metrics such as topological imbalance measures, diversification rate analysis and measures of phylogenetic diversity. However, there was a need for biologically appropriate method to overcome the effects of this phylogenetic uncertainty. Tyler and co-authors present a simple approach to polytomy resolution, using biologically relevant models of diversification using free available software, BEAST and R. The paper should be useful for many future analysis of the mammalian supertree.

Raised in a small town in Canada’s far north, Tyler has always had a passion for understanding the natural world. This passion led him to the University of Victoria, where he completed his B.Sc. Honours in Earth Sciences in 2004. It was there that he discovered the world of paleontology. He returned to academia after spending several years working as a geologist to pursue his M.Sc in Quaternary paleontology. He completed this degree in 2010, focussing on the use of aDNA to improve our understanding of imperilled northern species, and to help inform management practices. During this time, he and his supervisor, Arne Mooers, became involved in a “side project” aimed at improving the usability of incompletely resolved phylogenies in conservation decision making processes. This work has since expanded far beyond his M.Sc. thesis to include several published papers, including the Robert May prize winning paper on resolving polytomies of dated supertrees. Tyler currently lives in Canada’s frigid north and works as a government biologist, paleontologist and independent researcher.

 Winner of the Robert May Prize 2010

Iain Stott

The 2010 winner is Iain Stott, for his co-authored paper “On reducibility and ergodicity of population projection matrix models,” published in volume 1, issue 3 of Methods in Ecology and Evolution. This paper was picked as it reviews the assumptions of matrix projection models that are currently very widely used in applied and theoretical modelling, but shows that many models do not adhere to these assumptions. It makes some surprising findings about how key ideas of reducibility and ergodicity have been overlooked. This will be especially useful for practitioners who wish to develop and apply models.
Iain Stott undertook his undergraduate degree in Conservation Biology and Ecology at the University of Exeter’s Cornwall Campus. With the sun, sea, sand and science doing little to dissuade from staying, he continued on at the campus after graduating in 2008 to embark upon a PhD in the Centre for Ecology and Conservation under the supervision of Dr. David Hodgson and Prof. Stuart Townley.

His research focuses on models of the dynamics of populations of plants and animals. Such models are key to understanding both future population state as well as past evolutionary history, and can be manipulated and understood from new angles through employing tools borrowed from control systems engineering. Iain is interested in using such tools to improve the predictive power of population models to facilitate better conservation, and in the potential extension of such theory and methodology to other ecological and evolutionary systems. In particular, such work may help to understand the resilience of populations, species, communities and ecosystems in the face of global threats to biodiversity.